
Quiz	3	Review
Suvinay Subramanian
6.823	Spring	2016

4/21/16 1

Topics	Snapshot
» Cache	coherence
- Directory,	snoopy	protocols
- MSI,	MESI,	MOSI
- Synchronization

»Memory	consistency	models
- Sequential	consistency
- Fences

» On-chip	interconnection	networks
- Metrics	(diameter,	bisection	bandwidth,	avg latency)
- Routing,	flow	control	deadlock	freedom
- Router	microarchitecture

4/21/16 2

Cache	Coherence

» Problem:	If	multiple	processors	cache	the	same	
block,	how	do	they	ensure	“correct”	view	of	the	
data?
» Concerned	with	accesses	to	a	single	address.

Two	rules:
1. Write	propagation:	Writes	eventually	become	

visible	to	other	processors
2. Write	serialization:	Writes	to	same	location	are	

serialized
4/21/16 3

Coherence	Protocols

» Invalidation	vs	Update-based	

» Snoopy	vs	Directory-based

4/21/16 4

Coherence	Protocols

»MSI	states:
- Modified	(M):	Cache	has	exclusive	access	to	line	with	
read,	write	permissions.
- Shared	(S):	Cache	has	shared,	read-only	copy	of	line.
- Invalid	(I):	Cache	does	not	have	copy	of	data

»MSI	optimizations:
- Exclusive	(E)	state
- Owned	(O)	state

4/21/16 5

Synchronization	Primitives

»Why?	Sequencing	actions	among	multiple	
processes.	Used	to	implement:
- Mutex (locks)
- Condition	variables
- Semaphores

» Some	synchronization	primitives:
- Test-and-set
- Load-reserve,	store-conditional
- Swap
- Compare-and-swap

4/21/16 6

Different	primitives	
have	different	
properties,	and	
present	different	
implementation	
tradeoffs.

Compare-and-swap

» Atomically loads	value	at	effective	memory	
address,	and	compares	value	to	value	in	register	
old.	
- If	both	values	are	equal,	update	memory	location	with	
value	in	register	new
- Else,	update	value	in	old with	value	in	memory

4/21/16 7

CAS old, new, Imm(base):
if (old == Mem[Imm+base])

Mem[Imm+base] ß new
else

old ß Mem[Imm+base]

Load-reserve,	store-conditional

4/21/16 8

LR rs, (rt):
<flag, addr> ß <1, rt>
rs ß Memory[addr]

SC (rt), rs:
if <flag, addr> == <1, rt>:

Clear other procs flag
Mem[addr] ß rs
status ß 1

else:
status ß 0

See	handout	13.
It	shows	you	how	to	
implement	a	lock	
using	CAS.

L15,	16	show	you	
how	to	implement	
locking	using	swap.

Different	primitives	
have	different	
properties,	and	
present	different	
implementation	
tradeoffs.

Topics	Snapshot
» Cache	coherence
- Directory,	snoopy	protocols
- MSI,	MESI,	MOSI
- Synchronization

»Memory	consistency	models
- Sequential	consistency
- Fences

» On-chip	interconnection	networks
- Metrics	(diameter,	bisection	bandwidth,	avg latency)
- Routing,	flow	control	deadlock	freedom
- Router	microarchitecture

4/21/16 9

Memory	Consistency	Model

A	memory	(consistency)	model	specifies	the	order	in	
which	memory	accesses	performed	by	one	thread	
become	visible	to	other	threads	in	the	program.	

» Contract	between	the	hardware	and	software

» Loosely	speaking,	it	specifies:
- Set	of	legal	values	a	load	can	return
- Set	of	legal	final	memory	states	for	a	program

4/21/16 10

Memory	Consistency	Model

» Sequential	Consistency	(SC)
- Maintain	program	order
- Loads,	stores	appear	atomic
- “Strongest”,	most	intuitive	model

»Weak	Memory	Models
- Total	Store	Order	(TSO)
- Partial	Store	Order	(PSO)
- Relaxed	Memory	Order	(RMO)

4/21/16 11

Enable	several	
optimizations	on	the	
processor,	memory	system,	
interconnection	network.

Memory	Fences

» Idea:	Not	all	accesses	need	to	be	“strictly”	ordered.	
Programmer	identifies	regions	which	need	(not)	be	
ordered.

»Primitives	that	prevent	otherwise	permitted	re-
orderings	of	loads	and	stores
»Different	flavors	on	different	systems:
- Sparc:	MEMBAR
- x86:	LFENCE,	SFENCE,	MFENCE

4/21/16 12

Topics	Snapshot
» Cache	coherence
- Directory,	snoopy	protocols
- MSI,	MESI,	MOSI
- Synchronization

»Memory	consistency	models
- Sequential	consistency
- Fences

» On-chip	interconnection	networks
- Metrics	(diameter,	bisection	bandwidth,	avg latency)
- Routing,	flow	control	deadlock	freedom
- Router	microarchitecture

4/21/16 13

Network-on-Chip

»Handles	communication	between	various	on-chip	
elements:	caches,	memory-controller.

» Several	characteristics:
- Topology
- Flow	control
- Routing
- Router	Microarchitecture	

4/21/16 14

Topology

» Arrangement	of	channels	and	nodes	i.e.	how	
different	nodes	connect	to	each	other.
- Ring,	mesh,	torus,	tree	etc.

» Properties
- Diameter
- Average	distance	/	average	latency
- Bisection	bandwidth

4/21/16 15

Routing

» Path	from	source	to	destination

» Properties:
- Deterministic/oblivious
- Adaptive
- Minimal
- Balanced
- Deadlock-free

4/21/16 16

Some	of	these	
are	often	at	odds	
with	each	other.

Routing	Deadlock

4/21/16 17

Turn	Model

4/21/16 18

The eight possible turns and cycles in a 2D mesh

Only four turns are allowed in the XY routing algorithm

4/21/16

1 4

2 3

AND

All possible turns

Restrict 1 turn
Restrict 1 turn

West-First

North-Last Negative-First

Channel	Dependency	Graph	(CDG)

» Vertices	in	the	CDG	represent	network	links.	Edges	
represent	if	a	particular	turn	is	allowed.

4/21/16 20

Cycles	in	the	
CDG	point	 to	
potential	
deadlock.

4/21/16 21

Channel	Dependency	Graph	(CDG)

Deadlock	free? No

4/21/16 22

Channel	Dependency	Graph	(CDG)

Deadlock	free? Yes

X X

X

X

X

X

X

X

X

X

XX

Minimal	routing

Flow	Control

»How	network	resources	are	allocated	to	packets	
traversing	the	network

» Bufferless
- Circuit	switching,	dropping,	mis-routing

» Buffered	
- Store-and-forward,	virtual	cut-through,	wormhole,	
virtual-channel

4/21/16 23

Head-of-line	(HoL)	Blocking

4/21/16 24

A

B

C D

1

2

Head-of-line	(HoL)	Blocking

4/21/16 25

A

B

C D

Solution:	Virtual	Channels

Router	Microarchitecture

4/21/16 26

Router	Pipeline

1. Buffer	Write	(BW)
2. Route	Compute	(RC)
3. Virtual	Channel	Allocation	(VA)
4. Switch	Allocation	(SA)
5. Switch	Traversal	(ST)
6. Link	Traversal	(LT)

4/21/16 27

All	the	best!	J

4/21/16 28

